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Abstract: It has become clear that repetitive sequences have played multiple roles in eukaryotic 

genome evolution. However, identification of repetitive elements can be difficult in the ab initio 

manner from reference sequence. Currently, some classical ab initio tools of finding repeats have 

already presented. The completeness and accuracy of detecting repeats of them are very low and need 

to be improved. To this end, we proposed a complete and accurate ab initio repeat finding tool, named 

UnSaReper, which is based on unbiased sampling and dynamic overlapping extension strategy. The 

performances of UnSaReper are compared in human genome data Hg19 with RepeatScout and 

RepeatFinder. The results indicate the following conclusions: 1) The completeness of UnSaReper is 

the best one in almost all chromosomes; 2) In terms of total size, UnSaReper is also more powerful 

than others. Consequently, UnSaReper is a complete and accurate ab initio repeat finding tool. 

 
Keywords: Repeat Finder, Unbiased Sampling, Dynamic overlap, greedy extension graph.  

 

Introduction 

 

The genomes of all eukaryotes contain repetitive elements of varying lengths, and which can 

occupy a significant fraction of the total DNA content (Sharma et al. 2004). More than 50% 

of the human genome is thought to consist of repeats of various types (Lander et al. 2001). 

Repetitive elements have played, and are continuing to play, critical roles in genome 

evolution (Kazazian et al. 2004). Mobile repetitive elements (i.e. transposons), in particular, 

appear to be an agent of evolutionary change with some extreme stress (i.e. when desperate 

measures such as creating new mutations may prove advantageous) (Bennetzen et al. 2000).  

 

The molecular evidence also suggests that some repeat elements may be instrumental in 

generation of new genes (Morgante et al. 2005). Moreover, repeats can have profound 

influences on gene expression (Assaad et al. 1993; Zuckerkand et al. 1995). Likewise, mobile 

element insertions can cause epigenetic changes in regulation of nearby genes (Lippman et al. 

2004). There are two major groups of repeats in eukaryotic genomes: tandem repeats and 
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dispersed repeats (Jason et al. 2010). Tandem repeats are grouped into three major 

subclasses: satellites, mini-satellites and microsatellites; Likewise, dispersed repeats can also 

be sub-grouped into five types (Smit 1996): Short Interspersed Nuclear Elements (SINEs), 

Long Interspersed Nuclear Elements (LINEs), Long Terminal Repeats (LTRs), DNA 

transposons and others.  

 

Consequently, repeat identification is a critical part of the analysis of a newly sequenced 

genome and is of considerable importance. A number of computing algorithms have been 

developed to handle this problem. These algorithms can be classified to two categories: 

unassembled reads based methods and assembled sequences based methods. For the 

assembled sequences based, two strategies are employed (The library based strategies and ab 

initio strategies). The library based methods mainly include RepeatMasker (Smit and Green 

2013), Censor (Jurka et al. 1996) and MaskerAid (Bedel et al. 2000).  

 

Library-based systems identify repetitive sequences by comparing input datasets against the 

repeat database. Thus, their utility in novel repeat discovery is limited, whereas the ab initio 

algorithms identify repetitive elements in a manner that does not employ known repeat 

sequences or repeat motifs in the discovery process.  

 

Relatively, the ab initio algorithms are superior to the library based methods for the novel 

repeats identification, which mainly include Recon (Bao and Eddy 2002), PILER (Edgar and  

Myers 2005), RepeatScout (Price et al. 2005) and RepeatFinder (Shah et al. 2008a).  

 

For the ab initio methods, two main strategies have been used to address the problem of ab 

initio repeat identification: similarity search and word counting. However, similarity search 

programs are not practical for all against all comparison of large genomes, such as Recon and 

PILER. Consequently, word counting is an alternative way to find repeats.  

 

The rationale is that a genomic region containing a high number of frequent words is most 

likely a repeat. Currently, these ab initio repeat finders with same properties were assessed 

comprehensively, and the comparisons (Surya et al. 2008b) indicated that RepeatScout and 

RepeatFinder were top two algorithms for detecting repeats without any prior repeats 

database in ab initio manner overall. However, the completeness and accuracy of detected 

repeats by them are still relatively low and need to be improved. 

 

To this end, we proposed a complete and accurate ab initio repeat finding tool for reference 

genome, named UnSaReper (Unbiased Sampling Repeat Finder), which has the following 

properties:  

 

1) detecting repeats in ab initio manner without using any known pattern or repetitive 

sequence database in the whole process; 2) unlike RepeatScout and RepeatFinder, 

UnSaReper also can estimate the copies of detected repeats; 3) similar to RepeatScout and 
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RepeatFinder, the inputs are all assembled sequences; 4) more complete and accurate of 

identifying repeats.  

 

The performances of UnSaReper were extensively evaluated and compared with other top 

two methods, RepeatScout and RepeatFinder, in human chromosomes Hg19 datasets. Results 

indicated that the performances of UnSaReper are superior to others in terms of the 

completeness and accuracy.  

 

Specifically, 1) for the completeness of Family, UnSaReper is much more powerful than 

others in almost all chromosomes. For example in chr3, there are 22375, 675 and 1918 

families of repeats detected by UnSaReper, RepeatScout and RepeatFinder respectively, the 

performance of UnSaReper is almost 33 times and 12 times of corresponding other tools.  

 

2) For the size of detected repeats, UnSaReper also outperformed others in almost all 

chromosomes. For example in chr2, the total size of detected repeats by corresponding three 

tools are 2655kb, 467kb and 779kb respectively, UnSaReper is almost 5.7 times and 3.4 

times of RepeatScout and RepeatFinder. What’s more, UnSaReper can also estimate the copy 

number of detected repeats accurately as an auxiliary function.  

 

Consequently, UnSaReper is a complete and accurate ab initio repeat finder tool. The 

executable program is freely available for non-commercial users by request from the authors. 

 

Results 

 

The principle of UnSaReper is based on unbiased sampling and repeats assembly strategies. 

Similar to RepeatScout and RepeatFinder, UnSaReper takes the whole genome or assembled 

sequence as the input.  Then, subsequences are sampled uniformly from the input sequence to 

construct the reads library.  Based on the library, unique process is performed to obtain the 

frequency of each unique one. The seed of repetitive element is selected according to the 

highest frequency.  

 

Finally, seed extension strategies are used to capture repeats. The concrete steps and process 

are detailed as follows. UnSaReper runs in six key steps (Figure 1): unbiased sampling, 

library sorting, unique processing, hash index, seed selection, repeat extension.  
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Figure 1. The graphic illustration of key steps of UnSaReper. 

 

1) Unbiased sampling (Figure 1(A)). The subsequences with fixed length are sampled 

uniformly from the input sequence to construct reads library. By unbiased sampling, the 

reads library can uniformly cover any given region of input sequence. Therefore, a 

genomic region containing a higher number of frequent subsequences can be considered 

as a repeat. For example, if sampling depth , which indicates that any region of 
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the input sequence can be covered by library twice uniformly.  

 

2) Library sorting. (Figure 1(B)). In this step, the reads in the library will be sorted by 

dictionary order. This sort strategy is to perform unique process and compute the 

frequency of the unique one.  

3) Unique Processing (Figure 1(C, D)). The identical reads are collapsed into one unique 

read and its corresponding frequency will be recorded. Due to the unbiased sampling, the 

read with frequency higher than the sampling depth is tend to come from repetitive 

region, which will be selected as the seed for repeats extension. While, the one with 

frequency equals to or smaller than sampling depth is tend to come from non-repetitive 

region, which will be removed in the following steps.  By removing the potential non-

repetitive elements, the amount of data will be decreased sharply, especially for the 

densely sampling data.  

4) Constructing hash index (Figure 1(E)). In order to improve computing speed, an indirect 

hash structure was designed and adopted in this part. Firstly, the index key words are 

transformed into quaternary integers instead of the string itself. Secondly, the identifiers 

of the unique reads are recorded in decimal list. Thirdly, constructing the mapping 

relations between unique reads and decimal list. This index structure adopts integer 

arithmetic instead of string operations, and the computational complexity is greatly 

reduced. Consequently, this structure is appropriate for the DNA reads, especially for the 

large datasets. 

5) Seed selection (Figure 1(C, D)). An initial read sequence in the library which is so called 

a seed is necessary to initiate the repeat finding process. Therefore, the seed should be 

selected with frequency higher than the sampling depth.  

6) Repeats finding. After selection of seed, the strategy of greedy graph extension (Dohm 

et al. 2007) will be performed in the dynamic overlapping interval (Lian et al. 2014), 

which is an appropriate range of , where  and  are minimum and 

maximum overlap. Given a seed, UnSaReper firstly extends at the 3’ end and then at the 

5’ end.  In each extension, the mean value of sampling depth in the interval will be 

computed, which is used to control the repeat finding process. If  , the 

repeat finding process will be stopped, where 0<  is a tuning parameter.  

 

Figure 1. The graphic illustration of key steps of UnSaReper. (A) Unbiased sampling. Input 

sequence contains one repeats with two copies and three non-repeats (red represents repeats 

with two copies, blue, green and violet represents three non-repeats), reads are sampled from 

the reference genome uniformly, the default sampling depth is set to  that is each 

locus was sampled twice. (B) Library sorting. The reads in the library will be sorted in 

dictionary order. (C) Unique Processing. The five different color lines represent the five 

unique reads in sorted library. Each of them appears with different frequency. By unique 

processing, the identical reads are collapsed into unique one and its corresponding frequency.  
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The reads with frequency smaller than will be removed. (D) Seed selection. The unique 

reads are ranked by frequency (from high to low). The reads with frequency higher than 

sampling depth  will be selected as the seeds for repeats (the red dotted frame), while the 

others will be removed. (E) Hash index construction. (F) Repeat finding. UnSaReper applied 

greedy extension strategy to dynamic overlapping interval to capture repeats. In the extension 

process, UnSaReper firstly extend at 3’ end and then 5’ end. Meanwhile, the mean value of 

sampling depth  in the interval is used to detect the boundary of repeats and control 

whether the extension process can be continued. For example, if , the mean sampling 

depth in region of repeats will be satisfied . Therefore, 

if , which indicates the region is probably the boundary of repeats 

or non-repeats, and the extension process will be stopped.   

 

Assessments 

 

In this part, we evaluated the performances of UnSaReper and compared with other two ab 

initio methods, RepeatScout and RepeatFinder, in human genome datasets Hg19. These two 

methods performed best among the same kind of tools in reference (Surya et al. 2008b), 

what’s more, the inputs of these three tools are all reference genomes or sequences. The 

detailed results are presented as follows.  

 

A. Metrics: 

 
Due to the same characteristics of three tools, it is only fair to use the same inputs and 

recognized metrics to compare the performances of them. Consequently, the metrics, such as 

Family, N50, Max, Total size, Repeat Accuracy and Copy Accuracy are employed. Some of 

them are widely used in reference (Surya et al. 2008b) , such as, Family, N50, Total size. 

Repeat Accuracy and Copy Accuracy are specially designed for evaluating the correctness 

and accuracy of detected repeats. Their definitions and effectiveness are as follows: 

 

Family: a group of repetitive sequences inferred to have a common ancestor based upon 

sequence similarity. Thus, in this paper, the similarity is set to 90%. This metric is used to 

evaluate the completeness of types of detected repeats. A good repeat finder tool should 

detect more completeness of families of repeats. The larger family indicates more types of 

repeats are detected, which means the method has more completeness of detecting repeats. 

Therefore, larger family is preferred.  

 

N50: The N50 value is the size of the smallest repeat such that 50% of the repeats is 

contained in repeats of size N50 or larger, and which is used to evaluate the continuity of 

detected repeats. The larger N50 indicates the better continuity of detected repeats.  
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Max: the maximum detected repeat, which is used to evaluate the performances of detecting 

large repeats. Therefore, the larger Max indicates the larger repeat can be detected. 

 

Total size (T-size): the total size of detected repeats, which is used to evaluate the 

completeness of length of detected repeats, and which is defined as follows. , 

where  is the total length of all detected repeats,  is the  family of repeat,  is the 

number of family. For example, reference genome M contains three Families of repeats: 

repeat A with 100 copies and length 500bp, repeats B with 50 copies and length 1000bp, and 

repeats C with 20 copies and length 1500bp. Therefore, Family=3, N50=500bp, 

Max=1500bp, Total size .  

 

Repeat Accuracy (R-Acc): the accuracy of detected repeats, which is used to evaluate the 

accuracy of detected repeats and defined as follows: 

 

 
 

Where  is the number of real family,  is the number of wrong families. The error 

detected repeat was defined as the one whose similarity with reference genome is lower than 

95%.   

 

Copy Accuracy (C-Acc): the accuracy of the copy numbers of detected repeats, which is 

defined as follows. 

 
 

 

This metric is a relative accuracy of copy numbers of detected repeats, and which can assess 

the accuracy without the influences of dramatic changes of one repeat. Where  is the total 

copies of repeats.  is the real copy numbers of family of repeat,  is the estimated 

copy number of corresponding repeat. 

 

For evaluating the accuracy, the metrics, such as Repeat accuracy and Copy accuracy are 

computed by aligning the corresponding items back to the reference genome using program 

swalign in MATLAB platform. The default similarity is set to 95%.  Among these metrics, 

Family, N50, Max and Total size are specially designed for judging the completeness of 

detecting repeats, while the Repeat accuracy and Copy accuracy are specially designed for 

judging the accuracy of detected repeats and copy numbers. 
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B. Performances assessment  

 
Hg19 dataset contains all 24 human chromosomes, which represents a wide range of genome 

size and different repeats structures. Therefore, the extensive evaluations and comparisons of 

these three tools can make lots of sense in Hg19. Furthermore, these three tools are all ab 

initio repeat finder, each of them can detect repeats without any repeat database or pattern. 

Thus, for comparison, we run three of them independently on every chromosome, and then 

the corresponding metrics are computed respectively. The detailed results are presented in 

Table 1 and the following sections. 

 

Table 1: The results of three ab initio repeat finder tools in human 24 chromosomes 

 

Human Methods Family N50 

(.bp)  

Max 

(.kb) 

T-size 

(.kb) 

R-

Acc 

(%) 

C-

Acc 

(%) 
Chrs 

 UnSaReper 35133 105 9.13 3732.8 98.2 100 

Chr1 RepeatScout 2051 1500 11 1435 68 71 

 RepeatFinder 3270 270 9.5 777.9 100 100 

 UnSaReper 30237 83 9.02 2655.3 99.3 100 

Chr2 RepeatScout 868 900 10 467 65 63 

 RepeatFinder 4570 160 18.5 779 100 100 

 UnSaReper 22375 72 1.64 1681.7 99.1 100 

Chr3 RepeatScout 675 800 8.1 317 57 64 

 RepeatFinder 1918 150 0.8 294 100 100 

 UnSaReper 22456 75 6.5 1781.1 98.4 100 

Chr4 RepeatScout 774 1100 20 440 57.2 73.4 

 RepeatFinder 3061 180 4.7 584.5 100 100 

 UnSaReper 21459 86 9.3 2005.3 99 100 

Chr5 RepeatScout 1029 2400 20 853 70 81.2 

 RepeatFinder 2902 200 1.2 563.6 100 100 

 UnSaReper 21223 76 7.8 1679 98.6 100 

Chr6 RepeatScout 803 680 8.3 359 53.2 67.1 

 RepeatFinder 2012 150 2.7 320.8 100 100 

 UnSaReper 25896 88 4.2 2371 99.2 100 

Chr7 RepeatScout 1224 900 17.5 655 57.2 72 

 RepeatFinder 2537 170 4.2 433 100 100 

 UnSaReper 16808 83 10.5 1527.4 100 100 

Chr8 RepeatScout 740 2400 20 573 52.2 75 

 RepeatFinder 1986 150 6.35 332 100 100 

 UnSaReper 22516 280 9.2 3531 97.6 100 

Chr9 RepeatScout 1890 440 20 3303 54.3 65.6 
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 RepeatFinder 1453 200 18 312 100 100 

 UnSaReper 18804 132 7.7 2297 99.4 100 

Chr10 RepeatScout 1454 1900 20 1088 65 70.4 

 RepeatFinder 1430 160 6.2 256.8 100 100 

 UnSaReper 17207 76 3.0 1369.7 99.3 100 

Chr11 RepeatScout 837 850 10.7 398.7 25 56 

 RepeatFinder 1295 160 2.0 205.8 100 100 

 UnSaReper 17092 73 2.8 1304 97.6 100 

Chr12 RepeatScout 692 600 11.7 292 30 61 

 RepeatFinder 1965 160 3.56 315 100 100 

 UnSaReper 9311 73 5.0 714.8 96.8 100 

Chr13 RepeatScout 576 600 10 251 22 35 

 RepeatFinder 1486 150 6.5 244.7 100 100 

 UnSaReper 10698 75 1.0 846.9 97.2 100 

Chr14 RepeatScout 653 700 15.3 308 21 51.6 

 RepeatFinder 1950 190 1.0 326.6 100 100 

 UnSaReper 13937 186 8.6 1916 98.1 100 

Chr15 RepeatScout 1192 1800 12.8 853 55 81.2 

 RepeatFinder 883 160 32.4 146.6 100 100 

 UnSaReper 16551 123 14.7 1887 98.3 100 

Chr16 RepeatScout 1390 1800 20 811 67 74 

 RepeatFinder 1447 150 1.7 234.9 100 100 

 UnSaReper 15832 101 5.4 1629 98.1 100 

Chr17 RepeatScout 1082 900 13 590 39 58.6 

 RepeatFinder 1979 160 1.36 325 100 100 

 UnSaReper 6816 73 4.0 521.5 96.5 100 

Chr18 RepeatScout 410 600 13.7 163.8 19 46.3 

 RepeatFinder 1250 140 2.1 185 100 100 

 UnSaReper 14194 78 3.0 1167 96.7 100 

Chr19 RepeatScout 965 1000 17.7 567 40 71.6 

 RepeatFinder 1877 230 3.4 405 100 100 

 UnSaReper 6974 72 0.75 521.7 96.4 100 

Chr20 RepeatScout 364 700 20 175 14 26.3 

 RepeatFinder 780 140 0.87 116.3 100 100 

 UnSaReper 4136 74 0.7 315.7 95.9 100 

Chr21 RepeatScout 309 800 20 151 16.5 44.6 

 RepeatFinder 474 130 0.41 65.7 100 100 

 UnSaReper 6825 107 4.4 725.7 96.3 100 

Chr22 RepeatScout 571 1000 15.7 305 58 81 

 RepeatFinder 531 140 0.58 77 100 100 
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 UnSaReper 22776 81 5.2 2017.7 97.6 100 

ChrX RepeatScout 1224 800 20 615 35 84.5 

 RepeatFinder 3288 190 12.2 667 100 100 

 UnSaReper 5918 518 8.8 1167.2 96.8 100 

ChrY RepeatScout 955 4400 20 1326 30 64.3 

 RepeatFinder 2820 190 5.5 564.7 100 100 

 

Table 1 presented the detailed results of compared tools in all human genomes. Each metric 

has placed in a separate column in Table 1. It is indicated from the metrics that UnSaReper 

performed best among three tools in detecting repeat. What’s more, in order to display the 

comparisons more clearly, metric Family, Max and T-size were plotted respectively, which 

make more sense about their performances. 

 

Column 3 displays the number of families of detected repeats by three tools respectively. The 

metric Family is aimed to judge the completeness of finding repeats, the larger family 

indicates the better completeness of detected repeats. In order to clearly compare the results, 

the graphic illustration of column 3 were presented in Figure 2, from which one can clearly 

see that the metric of family by UnSaReper is much higher than two others in almost all 

chromosomes.  For example, (1) in chr1, there are 35133, 2051 and 3270 families of repeats 

were detected by UnSaReper, RepeatScout and RepeatFinder respectively, which means that 

the performances of UnSaReper is almost 17 times and 10 times of RepeatScout and 

RepeatFinder respectively; (2) in chr3, there are 22375, 675 and 1918 families of repeats 

were detected by three of them, and corresponding times of UnSaReper for RepeatScout and 

RepeatFinder are 33 and 12. Furthermore, in order to show the overall performances of 

family by them, the percentage pie chart was presented in Fig. 3, which shows the percentage 

of them are 85%, 5% and 10%, the corresponding times of UnSaReper for RepeatScout and 

RepeatFinder are 17 and 8 respectively. Consequently, in terms of the completeness of 

finding repeats, UnSaReper performed best among three tools. 

 

 
Figure 2. The bar graph of detected repeat families in human 24 chromosomes by three 

methods. 
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Figure 3. The percentage pie chart of family by three tools 

Column 4 displays the mean size of detected repeats. This metric is for the continuity of 

results, the larger N50 indicates the better continuity of detected repeats. From this metric, 

RepeatScout performed better than UnSaReper and RepeatFinder, which indicated that the 

continuity of UnSaReper is less than RepeatScout and RepeatFinder. Column 5 shows the 

maximum size of detected repeats, which is used to assess the performances of finding large 

repeats. Likely, the graphic illustration of this metric has presented in Figure 4, which 

indicated that the performances of three tools are not consistent, and are possibly related to 

the size of chromosomes and intrinsic structures. Overall, in terms of detecting large repeats, 

RepeatScout performed best, UnSaReper and RepeatFinder performed little down. 

 

 
The blue, red and green represent UnSaReper, RepeatScout and RepeatFinder respectively, 

the unit is kb. 

 

Figure 4. The point plot of maximum repeats detected by three tools in human 24 

chromosomes. 

 

Column 6 presented the total size of detected repeats by three tools, this metric is aimed to 

evaluate the completeness of the size of repeats. For repeat finding tools, the larger T-size is 
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preferred, which showed the better performances of finding repeats. Meanwhile, Figure 5 

graphic presented the area chart of T-size by three tools in all 24 chromosomes. Clearly, 

UnSaReper performed best in all chromosomes in terms of the size of detected repeats. 

 

 
 

Figure 5. The area figures of total size of detected repeats by three tools in human 24 

chromosomes. 

 

Notably, the last two columns of Table 1 presented the accuracy of detected repeats, which 

told another story beside the quantitative relations. (1) The column 7 displayed the accuracy 

of detected repeats. This metric distinctly demonstrated that UnSaReper and RepeatFinder 

have a superior accuracy compared to RepeatScout. Although RepeatScout has the best 

performances of detecting large repeats, but the accuracy is too much low, which means 

RepeatScout detect large repeats with the expense of sacrificing the accuracy.  (2) The 

column 8 showed the accuracy of copy numbers, which is used to evaluate the performances 

of estimating copy numbers. From this metric, one can clearly see that RepeatScout has no 

capability of estimating copies. Although both of UnSaReper and RepeatFinder can estimate 

copy numbers with 100% accuracy, but RepeatFinder only can detect repeats with two 

copies. For the repeats with three or more copies, RepeatFinder detect them separately. This 

strategy can lead to the redundant repeats and false families, but UnSaReper can resolve this 

problem well by the selecting different seed for extending. Therefore, UnSaReper has no 

redundant repeats and false families. 

 

C. Sequence consensus 

 
Comparison with known repeats can make more sense to evaluate the consensus of results. 

As a consequence, we compare the similarity of detected repeats with famous repeats 

database, Repbase (Jurka et al. 2005). In Repbase, there are 583 loci of known repeats for 

human species including classification, sequences, genome ID and source. The Venn diagram 

of compared results presented in Figure 6. From this diagram, the following conclusions can 

be safely come. (1) Among these 583 known repeats in Repbase, there are 258, 264 and 54 

repeats detected by UnSaReper, RepeatScout and RepeatFinder respectively,  and the 

corresponding consensus rate with known repeats is 44.3%, 45.3% and 9.3% respectively. 
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The generally low consensus rate indicated that the compatibility of different tools is a little 

poor. Nevertheless, RepeatScout and UnSaReper outperformed RepeatFinder in terms of 

sequence consensus rate. (2) In terms of the cross consistency, UnSaReper has 18,652 and 

26,543 repeats consistent with RepeatScout and RepeatFinder respectively, the corresponding 

consensus rate is 82.3% and 57.6%, which means the consistency with RepeatScout is better 

than RepeatFinder. Consequently, in terms of the sequence consensus, UnSaReper and 

RepeatScout performed better than RepeatFinder.  

 
Figure 6. The Venn diagram of compared results with known repeats in database Repbase. 

 

D. Implementations 

 
UnSaReper was implemented in MATLAB platform and the computing requirement is: 

3.5GHz eight Intel Celeron CPU with 32GB RAM and 64bit operational windows system. In 

order to assess the requirements of hardware of three tools, we choose two chromosomes of 

Hg19 randomly, chr3 and chr14. The lengths of them are 19,479,7136bp and 8,828,9540bp, 

and which represent a wide range of genome size and repetitive structures. The CPU times 

and RAM requirements are presented in Table 2.   

 

TABLE 2: The hardware requirements of three tools in chr3 and chr14. 

 

Chrs Methods CPU times RAM 

 UnSaReper 61minutes 29Gb 

Chr3 RepeatScout 38 minutes 26Gb 

 RepeatFinder 5 minutes 13Gb 

 UnSaReper 36 minutes 22Gb 
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Chr14 RepeatScout 18 minutes 17Gb 

 RepeatFinder 2 minutes 10Gb 

 

From TABLE 2, we can clearly see that the CPU times of UnSaReper in both chromosomes 

(61minutes and 36 minutes) is longer than others and corresponding RAM is 29 GB and 22 

GB, which is also larger than others. Obviously, UnSaReper has a higher hardware 

requirement. 

 

Discussions 

 

The identification of repeats in ab initio manner from whole genome or assembled sequences 

is a difficult task for genome analysis and is still challenging the many repeats finders, due to 

the complex repetitive structures and big datasets. A large number algorithms including 

UnSaReper have been proposed to facilitate this problem, but this work is still not finished 

and challenged by the following factors. 

 

Similarity: repeats can be classified as identical repeats and high similar repeats. For identical 

repeats, it is a little bit easy to detect as long as the length of repeat is determined. But for the 

similar repeats, it is difficult to unify the consensus sequences and detect them due to the 

uncertainty of similarity. Different researchers define different repeats similarity according to 

the different research task. In general, the range of similarity is about 80%-98%. Non-

uniformed similarity lead to the difficulty of detecting high similarly repeats. In this paper, 

we define the similarity as 90%.  

 

Families: athough repeats are very common in eukaryotes genomes, but the determination of 

families is lack of uniformed standard and is closely related to similarity, length, copies and 

biology significance. For example only considering length in Figure 7, it is hard to tell 

whether there are two families of repeats (A and B) or only one family of repeats C due to 

abandoning the last sequence A. Therefore the larger family may be not beneficial to the 

practical biology research.  

 

 

 
Figure 7: the graphic illustration of lengths and copies of repeats. 

 

Length: the minimum length of repeat is another factor of challenging repeats finder. 

Different minimum length of repeats usually leads to different detected results. For example 

in Figure 7, if set the minimum length is 100bp, the detected repeat is only A with three 
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copies, while if we set the minimum length is 90bp, the detected results is two types of 

repeats: repeats A with three copies and repeats B with two copies. In this paper, the 

minimum repeats length is set to 100bp.  

 

Types: interspersed repeats, tandem repeats and the compound repeats. The complexity of 

types of repeats is also the challenge of finding repeats. Eukaryotes genomes always contain 

different types of repeats. Notably, the compound repeats are almost everywhere. For 

example in Figure 7, for the detected results, two repeats (A with three copy and B with two 

copy) and one repeats C with two copy(containing A and B), it is difficult to tell which one is 

correct. If researchers focus on the length of detected repeats, they may prefer to one repeats 

C, while others may argue two repeats A and B if they focus on the copies of detected results.  

 

Copies: repeats are referred to the sequences with two or more copies. For repeat finder, it is 

far from enough only to detect the one with two copies. But different algorithm has different 

emphasis. For example, the repeats detected by RepeatFinder are all with two copies.  For the 

one with three or more copies, RepeatFinder separated them by adding families to keep two 

copies, which easily lead to the redundant repeats.  

 

Classification of repeats: Different types of repeats may have different biological 

significance. Consequently, it is necessary to distinguish classes of repeating elements that 

are well studied and characterized, such as tandem repeats or large segmental duplication. 

Currently, these three repeat finding tools are mainly concerned on the identification of 

repeats rather than the classification (Surya et al. 2008b). Whereas the classification is 

performed by the specialized methods in post process (Wicker et al. 2007). Therefore, the 

tools with the ability of identification and classification will be more attractive in the future.   

 

Different repeat finder has different advantages and applications, such as belong to the same 

assembled sequence based repeat finding tool, RepeatMasker facilitate identification of 

repeats by comparing with repeat database. Whereas UnSaReper, RepeatScout and other ab 

initio repeat finding tools identify repetitive elements in a manner that does not employ 

known repeat database or repeat motifs in the discovery process. Likely, even though 

UnSaReper performed best in almost metrics in this paper, but it is not indicated that 

UnSaReper can replace others in repeat finding process. In contrast, UnSaReper simply 

provides another option for users to identify repeats from assembled genomes. Consequently, 

users should be aware of the advantages and disadvantages of each tool. In one word, if user 

takes length as the priority without considering accuracy, RepeatScout should be preferred, if 

user only want to detect repeats with two copies, RepeatFinder is the first choice, whereas if 

user takes family or total size as the priority rather than length, the UnSaReper should be 

preferred.  

 

Conclusions  

 

Genome repeats of eukaryotes occupy a significant fraction of the eukaryotes genomes. Most 
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of them have played and are continuing to play critical roles in genome evolution. In order to 

detect these repeats more completely and accurately, we proposed a repeat finding 

algorithms, named UnSaReper, which is an ab initio repeat finding tool similar to 

RepeatScout and RepeatFinder, the input of them are all whole genome or assembled 

genome. In order to evaluate their performances, the human genome datasets Hg19 and 

commonly recognized metrics were employed to evaluate their performance of detecting 

repeats from different aspects. By the extensive comparisons in Hg19, we can safely come to 

the following conclusions. Firstly, the completeness of families of detected repeats by 

UnSaReper is much better than RepeatScout and RepeatFinder. Secondly, UnSaReper is 

more powerful than others in detecting the total size of repeats. Thirdly, UnSaReper also can 

estimate the copy numbers of each corresponding items. Lastly, UnSaReper also can resolve 

the problem of redundancy repeats confusing RepeatScout and RepeatFinder. In one word, 

UnSaReper is a complete and accurate ab initio repeat finding tool and is very suitable for the 

large datasets and complex repetitive structures. 
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